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ABSTRACT

Occupant identi�cation proves crucial in many smart home appli-

cations such as automated home control and activity recognition.

Previous solutions are limited in terms of deployment costs, iden-

ti�cation accuracy, or usability. We propose SenseTribute, a novel

occupant identi�cation solution that makes use of existing and

prevalent on-object sensors that are originally designed to monitor

the status of objects they are attached to. SenseTribute extracts richer

information content from such on-object sensors and analyzes the

data to accurately identify the person interacting with the objects.

This approach is based on the physical phenomenon that di�er-

ent occupants interact with objects in di�erent ways. Moreover,

SenseTribute may not rely on users’ true identities, so the approach

works even without labeled training data. However, resolution of

information from a single on-object sensor may not be su�cient to

di�erentiate occupants, which may lead to errors in identi�cation.

To overcome this problem, SenseTribute operates over a sequence

of events within a user activity, leveraging recent work on activity

segmentation. We evaluate SenseTribute using real-world experi-

ments by deploying sensors on �ve distinct objects in a kitchen and

inviting participants to interact with the objects. We demonstrate

that SenseTribute can correctly identify occupants in 96% of trials

without labeled training data, while per-sensor identi�cation yields

only 74% accuracy even with training data.
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1 INTRODUCTION

Occupant identi�cation is fundamental in providing many value-

added services for smart homes. Personalized home control such as

comfort adjustments for lighting and HVAC proves to be important

for user convenience as well as energy and cost savings [5, 15, 39].

Furthermore, occupant identi�cation supports activity recognition

and/or occupant behavior analysis [43].

Prior works investigate the use of body-worn sensors for occu-

pant identi�cation [20, 21, 33]. Such solutions, however, are intru-

sive and are less practical because users are required to always carry

or wear the sensors. To solve this problem, infrastructure-based so-

lutions have also been explored. However, they make use of sensors

that may invade privacy, such as cameras and microphones [30, 41].

To overcome such problems, researchers also introduce solutions

leveraging special purpose sensors such as infrared or vibration

sensors [24, 27, 36, 37]. Because these solutions deploy the sen-

sors speci�cally for occupant identi�cation purposes, the solutions

come at high hardware and installation costs. Researchers also

explore existing infrastructure, such as WiFi, to help identify occu-

pants [43, 44]. However, they make strong assumptions – requiring

a user to walk in a straight line, or to stay within a line-of-sight

between transceivers – limiting their practicality.

Hence, to overcome the aforementioned limitations of prior work

and provide a more practical and yet cost e�ective solution, we ask

the following question – instead of building and deploying speci�c

sensors to provide a practical occupant identi�cation solution, can

we leverage sensing capabilities of existing IoT devices within a

smart home? To answer this question, we observe an emerging

trend in commercial on-object sensing devices [1–3, 18, 31], which

are detachable wireless sensor nodes that retro�t home objects

such as doors, windows, drawers, and/or refrigerators, to monitor

and report the object status over the home network. These devices

are already prevalent, and are projected to be more ubiquitous

throughout smart homes [16, 35].
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doors and drawers – by simply attaching the device to each object.

An on-object device is commonly equipped with inertial sensors

(e.g., accelerometer and/or gyroscope), which sense the movement

of object it is attached to. The sensor signals are then processed

to output object status – such as door or drawer open/close – and

reports the events to home owner’s smartphone over the cloud.

Companies such as Notion [2] and Samsung SmartThings [3] are

industry leaders, while there are many other commercial solutions

from various vendors [1, 18, 31]). These devices are projected to be

more prevalent in smart homes in the near future [16, 35]. We de-

sign SenseTribute to extract more expressive data than mere status

of objects, namely to infer the identities of occupants in a home.

Hence, SenseTribute inherently eliminates the costly need to build

and deploy speci�c sensing devices for occupant identi�cation.

2.2 Activity Segmentation

Activity segmentation – an actively studied topic in activity recog-

nition �eld – segments out a sequence of events that are performed

by a single occupant. However, this is a di�cult problem because

di�erent events are performed by di�erent persons that may be

temporally overlapping within a single stream of sensor data. Hence

researchers make use of combinations of sensor patterns and tem-

poral information to identify a sequence of events that constitute a

single activity segment [23, 28, 40]. For example, consider PersonA
cooking breakfast, while PersonB watching TV in the living room.

The cooking breakfast activity segment may consist of a sequence of

events such as: {kitchen door opening, fridge door opening, and pasta

drawer opening}. On the other hand, watching TV activity segment

may consist of a sequence of events such as: {sitting down on sofa,

taking out remote control, TV turning on}. Each of the sequence of

events belonging to the same activity segment are grouped together,

even though there may be temporal overlaps between individual

events. Activity segmentation is one of the important foundations

when designing SenseTribute. Speci�cally, Ensemble Module exploits

the above property that a sequence of events within an activity

segment is performed by the same user, enabling SenseTribute to

combine the con�dence of a sequence of events (see Section 3.5).

2.3 Occupant Identi�cation

Smart home occupant identi�cation is an important problem. Per-

sonalized home control is gaining much attention such as user-

speci�c comfort adjustments for lighting and HVAC for conve-

nience as well as energy e�ciency [5, 15, 39]. Due to potentially

signi�cant cost-savings, this is a real-world problem that are heavily

studied by appliance manufacturers as well. Furthermore, occupant

identi�cation supports many activity recognition applications. This

is because understanding who is performing the recognized activity

is a building block to associating activities to individual occupants,

rather than just knowing that someone at home has performed

the activity [43] (e.g., splitting costs between roommates based on

individual energy consumption or even simply providing feedback

to which family member consumes most energy).

Due to the importance of occupant identi�cation problem, prior

works explore solutions by deploying infrastructure-based sensors.

Researchers utilize ultrasonic-based doorway sensors to capture

the movements and the physical characteristics such as height [24]

and/or weight [27] of persons. Researchers also utilize structural

vibration-based sensors to detect occupant’s gait patterns [36, 37].

Occupants strike the �oor with di�erent gait patterns, inducing

unique structural vibration waveform. Similarly, researchers also

exploit changes in body electric potential due to walking [22].While

these solutions are promising �rst steps, all of them utilize hard-

ware that are speci�cally built and deployed to solve the occupant

identi�cation problem. This inevitably incurs high cost both in

terms of hardware as well as deployment costs.

Prior work also explore solutions that use existing infrastructure

such as Wi-Fi to utilize channel state information (CSI) induced by

occupant’s walking pattern [43, 44]. While these solutions do not

incur additional hardware or deployment costs, they face challenges

in limited deployment practicality. This is because these solutions

require the occupants to either (1) only walk in a straight line [43];

or (2) stay within the line of sight between WiFi transceivers [44].

As opposed to the related work, SenseTribute inherently reduces

the hardware and deployment cost because it utilizes existing and

prevalent on-object sensing devices deployed by users, and simultane-

ously provides a more practical occupant identi�cation by perform-

ing simple software modi�cations to extract information necessary

to identify the occupants.

3 DESIGN AND IMPLEMENTATION

We now present SenseTribute’s design and implementation. We

describe the details SenseTribute’s algorithm when the training

labels are known and unknown. We also explain how SenseTribute

ensembles di�erent objects to amplify the identi�cation accuracy.

3.1 SenseTribute Overview

SenseTribute’s goal is to identify the occupants by leveraging sig-

nals of on-object sensors utilizing supervised learning techniques.

SenseTribute is divided into two phases – a Bootstrapping and Iden-

ti�cation Phases. First, during the Bootstrapping Phase, SenseTribute

trains a classi�cation model from the collected sensor data (i.e.,

history data). Subsequently, in its Identi�cation Phase, SenseTribute

tests newly collected sensor data, to �nally identify the occupant.

In order to train the model for classi�cation, the system requires

training labels (i.e., ground truth occupant identity corresponding

to the collected history data). However, it may be more practical

for certain applications to not collect user provided training labels

(e.g., to increase usability). We account for this problem, and design

SenseTribute to automatically adapt its training scheme based on

the availability of user-provided labels.

We present the �ow chart diagrams to depict the overall SenseTribute

design as shown in Figure 2(a). Speci�cally, when the training labels

are provided to the system by the users (i.e., known labels scenario),

SenseTribute utilizes the traditional supervised learning techniques,

by taking as input for the Training Module, the (1) training label

and (2) data. For the training label, SenseTribute utilizes the user-

provided ground truth labels. For the training data, SenseTribute

�rst processes the collected history data in Pre-processing Module),

and then extracts necessary features in Feature Extraction Module.

Finally, at the end of the Identi�cation Phase, the Testing Module

outputs the Predicted Occupant Label, along with the classi�cation

probabilities of all the potential classes.
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Feature Domain Expression

RMS time
√

1/N
∑N
p=1 x

2
p

FFTRMS frequency
√

1/M
∑M
q=1 y

2
q

Peak2RMS time max(|x |)/
√

1/N
∑N
p=1 |xp |

2

Enerдy time
∑N
p=1 loд(x

2
p )

SMA time 1/N
∑N
p=1 |xp |

FFTmax frequency max(yq )

Mean time 1
N

∑N
p=1 xp

Median time median(xp )

Table 1: Features used in SenseTribute, where vectors, xp and

yq are time and frequency domain representations of the

pre-processed data, respectively. N and M are the number

of elements in x and y, respectively.
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Figure 4: We plot feature pairs for knock and fridge door

open/close event types for comparison.Knock plot depicts suf-

�cient separation of features across Persons A, B, D, and E,

while Person C has a large overlapping area. Fridge plot de-

picts su�cient separation for Persons A, B, and E, while Per-

sons C and D have large overlapping areas.

within a signal segment, a relatively widely used feature that e�ec-

tively describes the signal. The peak-to-RMS ratio of time domain

signal, Peak2RMS , measures more detailed signal distribution in

addition to RMS . For example, a person with thicker �nger bones

knocking on the door may trigger an impulse signal with a sharp

waveform, which may lead to a higher Peak2RMS value. We also

compute the log energy entropy [14, 34], Enerдy, which measures

the signal distribution. Signal magnitude area [7, 9], SMA, mea-

sures the average of the signal amplitude. The maximum value of

frequency domain signal, FFTmax , provides the peak amplitude of

yq . Finally, we use the common statisticalmean andmedian of xp
as measurements of central tendency.

Furthermore, we compare the feature distributions of di�erent

occupants by plotting feature pairs. Figure 4 depicts two examples

of feature pairs (Peak2RMS vs. SMA) from two distinct sensors

on a door (capturing knocking events) and refrigerator (capturing

refrigerator opening and closing events). Each marker represents

a feature comparison per occupant (i.e., PersonA to PersonE ). We

make the following two observations. First, we observe that within

each sensor, the feature pair provides information to distinguish

di�erent occupants at a fairly su�cient manner. For example, for

knocking event, PersonA, PersonB , PersonD , and PersonE exhibits

su�cient separation, while PersonC exhibits large overlapping area

with other occupants. Second, we also observe that across the two

events from di�erent objects, di�erent feature pairs contribute to

separating the occupants. For example, the feature pairs performed

well in distinguishing PersonD for knocking on a door but poorly

for opening and closing a refrigerator.

3.3 Known Labels Scenario

In the application scenario where the user provides the ground

truth labels for the training label, we leverage supervised learn-

ing techniques to perform occupant identi�cation. We implement

SenseTribute’s classi�cation modules (i.e., Training and Testing Mod-

ules) with Support Vector Machines (SVM) [6] using Radial Basis

Function (RBF) kernel. We choose SVM because it requires rela-

tively small amount of training data to achieve high classi�cation

accuracy, compared to other classi�cation methods such as neu-

ral networks. We implement the modules using publicly available

LIBSVM [11]. We use multi-class SVM classi�cation to classify n

occupants in smart home settings, where n ≥ 2. First, the Training

Module takes as input aforementioned feature vector of the train-

ing data and the training label to compute the trained model. This

module concludes the end of Bootstrapping Phase.

Second, the Testing Module in the Identi�cation Phase takes as

input the trained model and the feature vector of the testing data.

This module performs the SVM classi�cation to output the follow-

ing: (1) classi�cation probabilities, Pr [O = oi ], of all possible classes

(i.e., occupants), o1, ...,on ; and (2) �nal predicted label which is the

occupant, oi that yields highest Pr [O = oi ].

3.4 Unknown Labels Scenario

When he user does not provide any training labels, we leverage a hy-

brid approach of supervised and unsupervised learning techniques

to perform occupant identi�cation. The unknown and known

labels scenarios are equivalent in computing the feature vector.

However, it di�ers in that the system no longer has the given train-

ing labels to be input to the classi�cation modules. Hence, we infer

the training labels using the unsupervised learning techniques.

Speci�cally, we implement the Clustering Module with K-Means

clustering [25, 32], which takes a feature vector from the history

data and the number of cluster groups K . We assume that K , i.e.,

number of occupants in a home is known (see Section 5.2). K-Means

clustering algorithm groups each of the input observations into K

clusters with the smallest distance to the corresponding computed

centroid. This module outputs the clustered indices, which will

be subsequently used as the training label, in the Training Mod-

ule. We note that the clustered indices are quasi-labels, which does

not map directly to occupants’ explicit identi�ers (e.g., occupants’

names such as Amy vs. Bob). However, quasi-labels provide ade-

quate information to identify occupants to their pseudo-identi�ers

(e.g., PersonA vs. PersonB ) at the end of the Identi�cation Phase.

3.5 Ensemble Module

Each object’s identi�cation accuracy (output from Figure 2(a)) are

limited because each object has either low resolution of information,
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Figure 6: Figure depicts classi�cation accuracy by varying

number of occupants of each event type (for known labels sce-

nario). Each data point is an average accuracy of all combi-

nations within each number of occupants. As the number of

occupants increases, classi�cation accuracy decreases. The

average accuracy of di�erent event types for �ve occupants

case yields 74%.
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Figure 7: Figure depicts classi�cation accuracy due to dif-

ferent participants. Certain pair of event types yield contra-

dicting accuracy across di�erent participants. SenseTribute

takes advantage of such phenomenon to amplify the �nal

accuracy in its Ensemble Module.

4.3 Unknown Labels Scenario

We now evaluate SenseTribute when the training labels are not

provided by the user. As presented in Section 3.4, SenseTribute uti-

lizes a hybrid approach of unsupervised and supervised learning –

i.e., using clustering result as quasi-labels, to replace the unknown

training labels. To provide a comprehensive view of how clustering

accuracy a�ects the classi�cation accuracy, we set clustering accu-

racy arti�cially from 25% to 100%, for each event type, as depicted

in Figure 8. For example, a clustering accuracy of 50% indicates that

half of the training labels selected at random are made incorrect

on purpose. We repeat this process a thousand times and report

the average for each data point in this �gure. We show the result

of �ve occupants case as an example. This �gure illustrates that as

the clustering accuracy increases, the corresponding classi�cation

accuracy also increases (with 100% corresponding to known labels).

We now evaluate the performance of the Clustering Module. The

clustering accuracy is computed as Rand Index [38], which is de�ned
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Figure 8: Figure depicts how varying clustering accuracy af-

fects classi�cation accuracy by arti�cially setting clustering

accuracy from 25% to 100% for each event type (for �ve occu-

pants case). Classi�cation accuracy increases as clustering

accuracy increases for all event types.
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Figure 9: Figure depicts clustering accuracy when varying

number of occupants for each event type (for unknown la-

bels scenario). Knock and Drawer yield decreasing accuracy

while other event types yield increasing accuracy, as the

number of occupants increase.

as Equation 3:

Clustering Accuracy (Rand Index) =
TP +TN

TP +TN + FP + FN
, (3)

where TP, TN, FP, and FN, are True Positive and Negative, and False

Positive and Negative, respectively. Figure 9 depicts the clustering

accuracy (i.e., Rand Index), when we vary the number of occupants

i = 2, ..., 5. Each of the data points is an average of all possible

combinations of i occupants,
(5
i

)

. Furthermore, we report the av-

erage of a thousand iterations for all instances. We note that the

clustering accuracy decreases as the number of occupants increase

for Knock and Drawer event types. However, the rest of the event

types yield results that have increasing clustering accuracy as the

number of occupants increase. This is because Knock and Drawer,

which yield high classi�cation accuracy for Known Labels scenario,

have features that are su�ciently di�erentiable, while the rest of

the event types do not follow this trend. Hence, during clustering

of two occupants case, the two centroids may be very close to each

other, yielding low clustering accuracy. However, when the num-

ber of occupants increase, more centroids are introduced, yielding

higher clustering accuracy.
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Figure 10: Figure depicts the classi�cation accuracy when

varying number of occupants for each event type, for the

unknown labels scenario. As number of occupants increases,

corresponding accuracy also decreases.

Finally, we evaluate the classi�cation accuracy of SenseTribute’s

Unknown Labels scenario (i.e., output of Testing Module). We com-

pute the classi�cation accuracy in a similar manner to the afore-

mentioned Figure 8, namely purposely degrading the correctness

of the training label. Only this time, we take the actual empirical

results of clustering accuracy from Figure 9 instead of the arti�cial

numbers. We apply this strategy rather than directly applying the

output of the clustering indices as the training label. This is because

Clustering Module outputs clustered indices, which is at times dif-

�cult to map to corresponding ground truth labels. However, this

is necessary when computing the �nal classi�cation accuracy for

evaluation purposes. While improving clustering algorithm would

certainly help to solve this issue, we concentrate on evaluating

the e�ects of clustering accuracy on classi�cation accuracy. Fig-

ure 10 depicts the e�ect of the classi�cation accuracy as we vary

the number of occupants, where each data point, again depicts an

average of all possible
(5
i

)

combinations, and each combination is an

average of 10-fold cross validation (i.e., Leave-One-Out). We make

two interesting observations. First, similar to Figure 6 of the Known

Labels scenario, this �gure depicts an intuitive trend of decreasing

classi�cation accuracy as the number of occupants increase. This

trend exists even for the event types that have increasing clustering

accuracy with number of occupants from Figure 9. This is because

the e�ect of increasing the number of SVM classes outweighs the

e�ect of correct labels. Second, we also observe that classi�cation

accuracy are relatively lowered compared to Figure 6 of Known

Labels scenario due to the incorrect labels.

4.4 Ensemble Classi�cation Accuracy

Wenow evaluate SenseTribute’s EnsembleModule for both the known

and unknown labels scenarios. To provide a comprehensive view of

how the number of ensemble event types, and availability of training

labels a�ect the classi�cation accuracy, we present Figure 11. We

report the classi�cation accuracy when varying number of events

to ensemble from j = 2, ..., 6, where each variation is an average

of all
(6
j

)

combinations. Again, each combination is an average of

10-fold cross valuation (i.e., Leave-One-Out). We arti�cially assign

equal clustering accuracy per event type, again by arti�cially de-

grading the correctness of training label accordingly. We degrade

di�erent training label at random, and repeat this process for a
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Figure 11: Figure depicts how (1) number of ensemble event

types; and (2) availability of training labels a�ect classi�ca-

tion accuracy. We arti�cially assign equal clustering accu-

racy per event type. As number of ensemble event types in-

creases, accuracy increases, except for the 25% case. Also,

lower per event type clustering accuracy yields lower clas-

si�cation accuracy due to more mislabeled training data.
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Figure 12: This �gure depicts increasing classi�cation accu-

racy as we ensemble more number of event types, for both

Known andUnknown Labels scenarios.We observe high clas-

si�cation accuracy even if the training labels are not known.

thousand times to report an average value. Each of the lines plots

depict di�erent clustering accuracy – 25%, 50%, 75%, and 100% –

assigned per event type. The 100% clustering accuracy line graph

represents the known labels scenario. We observe the trend of in-

creasing classi�cation accuracy as we ensemble more event types.

This is intuitive as we have more information content to amplify

the con�dence of occupant identi�cation. The 25% per event type

curve does not follow this trend, however, due to the fact that most

of the training labels are incorrect, which would actually hurt the

performance as the number of event types increases.

Noting the e�ects of number of event types and availability of

training labels on classi�cation accuracy, we now evaluate the per-

formance of ensemble for both known and unknown labels scenarios,

as depicted in Figure 12. From these two plots, we make the follow-

ing two observations. (1)We observe that the classi�cation accuracy

increases as we ensemble more event types for both known and un-

known labels scenarios. For example, we observe for the unknown

labels scenario, an increase from 84% to 96%. This is intuitive, and

in fact, one of the main contributions of SenseTribute, as increasing

information content ultimately ampli�es the accuracy of occupant

identi�cation. (2) We observe only a small di�erence in the result-

ing classi�cation accuracy between the known and unknown labels
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Figure 13: Figure depicts classi�cation accuracy of ensemble

of event types for di�erent occupants when labels are known.

As the number of ensemble event types increases, the accu-

racy also increases.
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Figure 14: Figure depicts classi�cation accuracy of ensemble

of event types for di�erent occupants when labels are un-

known. As the number of ensemble event types increases, the

accuracy also increases.

scenarios. We further observe that the di�erence reduces as we

ensemble more event types. This important observation means that

SenseTribute provides a practical solution that does not require users

to provide manual labels with no signi�cant impact on occupant

identi�cation.

We also present the classi�cation accuracy per occupant for

di�erent number of event types. Again, we report the average over

all combinations. Figures 13 and 14 depict the corresponding results

for known and unknown labels scenarios, respectively. For both

�gures, we observe the similar trend as we ensemble more number

of event types, we achieve higher classi�cation accuracy.

5 DISCUSSION

In this section, we further discuss practical considerations and

directions for further study with respect to activity segmentation,

unsupervised learning techniques, and sensor calibration.

5.1 Additional Contextual Information

We highlight two additional contextual information that may poten-

tially be helpful for SenseTribute, namely order and time of events.

In this work, we design SenseTribute to perform occupant identi�ca-

tion based on the results of activity segmentation, which provides

a sequence of events that are performed by a single person. In

Section 4, we evaluate scenarios where the order of events (in an

activity segment) are same across di�erent participants. However,

in practice, there is a high probability that the order may vary. For

example, when making a bowl of cereal, PersonA may take out

a bowl from cabinet, milk from fridge, and cereal from cupboard,

while PersonB may perform the same activity in an opposite order.

In addition, di�erent occupants may conduct the same activity at

di�erent times of the day. For example, PersonA usually makes ce-

real around 8 a.m., while PersonB does the same at 10 a.m. Taking

the above two observations into account, we hint at the possibility

of a hybrid approach of solving both the activity segmentation

and occupant identi�cation problem simultaneously. This hybrid

approach would potentially increase the performance with the ad-

ditional contextual information. Furthermore, the hybrid approach

may even increase the identi�cation accuracy despite inconsisten-

cies in di�erent interactions by the same user over time, or similar

interactions by di�erent users.

5.2 Unsupervised Learning

Recall that when the training labels are not provided by the user,

SenseTribute utilizes clustering to infer the quasi-training labels.

We evaluate our results by clustering the history data during boot-

strapping phase. When SenseTribute is deployed in practice, we can

utilize online learning techniques [12, 13, 29] to improve the results

of clustering. This is because, over time, the clustering accuracy

would increase as the system collects more data, ultimately leading

to potentially higher identi�cation accuracy.

Furthermore, in our evaluation, we assume the knowledge of

“K” (i.e., number of occupants) in the K-means clustering algorithm.

We make such assumptions because it is practical to have such

prior knowledge of how many people live at home. Granted, we

note that if guests are introduced to smart home, it may lead to less

accurate results. In practice, however, there are clustering methods

to estimate the optimal “K”, such as Elbow method [26]. Also, there

are other clustering algorithms that do not require the number of

clusters [19]. However, we leave this study for future work.

5.3 Sensor Calibration

Recall from our evaluation that we deploy sensors on di�erent ob-

jects with consistent orientation of accelerometers and gyroscopes

as presented in Section 4.1. While we conducted the experiment as

a proof-of-concept, in practice, we cannot assume such deployment.

Hence, the system would need a simple but important calibration

phase, to identify the axes that have relatively richer information

content. SenseTribute may bene�t from the calibration phase, as

identifying a speci�c set of features and axes per object and/or event

type would ultimately increase the identi�cation performance.

6 CONCLUSION

We present SenseTribute, a smart home occupant identi�cation sys-

tem that leverages existing and prevalent on-object sensing devices

equipped with inertial sensors, which are traditionally designed to

monitor status of objects such as doors. SenseTribute re-purposes

these devices, and exploits machine learning techniques to pro-

vide a low-cost, non-intrusive, and practical occupant identi�cation

system in a smart home with high accuracy, even when training

labels are unavailable. Furthermore, SenseTribute combines infor-

mation from multiple sensors on di�erent objects to amplify the

identi�cation accuracy. We evaluate SenseTribute using real-world
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experiments with �ve on-object sensors deployed on distinct ob-

jects. The system achieves identi�cation accuracy of 96% when

the training labels are unknown, while only achieving per-object

accuracy of 74% on average even when the labels are known.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Founda-

tion (under grants CNS-1645759, CNS-1149611 and CMMI-1653550),

Intel and Google. The views and conclusions contained here are

those of the authors and should not be interpreted as necessarily

representing the o�cial policies or endorsements, either express

or implied, of CMU, NSF, or the U.S. Government or any of its

agencies.

REFERENCES
[1] MetaSensor: Meet Sensor-1. https://www.metasensor.com/.
[2] Notion: Home awareness, simpli�ed. http://getnotion.com/.
[3] Samsung SmartThings Multipurpose Sensor. https://support.smartthings.com/hc/

en-us/articles/205382174-Samsung-SmartThings-Multipurpose-Sensor.
[4] Arduino. 2017. Arduino/Genuino UNO. https://www.arduino.cc/en/Main/

arduinoBoardUno.
[5] Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal.

Sentinel: Occupancy Based HVAC Actuation Using Existing WiFi Infrastructure
Within Commercial Buildings (ACM SenSys ’13).

[6] Kristin P. Bennett and Colin Campbell. 2000. Support Vector Machines: Hype or
Hallelujah? SIGKDD Explor. Newsl. (2000).

[7] Sebastian D. Bersch, Djamel Azzi, Rinat Khusainov, Ifeyinwa E. Achumba, and
Jana Ries. 2014. Sensor Data Acquisition and Processing Parameters for Human
Activity Classi�cation. (2014). http://www.mdpi.com/1424-8220/14/3/4239

[8] S. Boll. 1979. Suppression of acoustic noise in speech using spectral subtraction.
IEEE Transactions on Acoustics, Speech, and Signal Processing (1979).

[9] C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen. 1997.
A triaxial accelerometer and portable data processing unit for the assessment of
daily physical activity. IEEE Transactions on Biomedical Engineering (1997).

[10] U.S. Census Bureau. 2017. Average number of people per household in the
United States from 1960 to 2016. https://www.statista.com/statistics/183648/
average-size-of-households-in-the-us/.

[11] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (2011).

[12] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremen-
tal Clustering and Dynamic Information Retrieval. In ACM Symposium on Theory
of Computing (STOC ’97).

[13] Anna Choromanska and Claire Monteleoni. Online Clustering with Experts. In
Proceedings of the 2011 International Conference on On-line Trading of Exploration
and Exploitation 2 - Volume 26 (OTEAE’11).

[14] R. R. Coifman and M. V. Wickerhauser. 1992. Entropy-based algorithms for best
basis selection. IEEE Transactions on Information Theory 38, 2 (March 1992),
713–718. DOI:https://doi.org/10.1109/18.119732

[15] Giorgio Conte, Massimo De Marchi, Alessandro A. Nacci, Vincenzo Rana, and
Donatella Sciuto. BlueSentinel: A First Approach Using iBeacon for an Energy
E�cient Occupancy Detection System (ACM BuildSys ’14). ACM.

[16] Deloitte. 2015. The Digital Predictions – The Deloitte Consumer Review.
[17] Analog Devices. ADXL335 Datasheet. http://www.analog.com/media/en/

technical-documentation/data-sheets/ADXL335.pdf.
[18] Ecolink. 2017. Ecolink Z-Wave Garage Door Tilt Sensor. http://discoverecolink.

com/product/tiltzwave2-eco/.
[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-

based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise (KDD’96).

[20] Davrondzhon Gafurov and Einar Snekkenes. 2009. Gait Recognition Using
Wearable Motion Recording Sensors. EURASIP J. Adv. Signal Process (2009).

[21] D. Gafurov, E. Snekkenes, and P. Bours. 2007. Gait Authentication and Identi�ca-
tion Using Wearable Accelerometer Sensor. In 2007 IEEE Workshop on Automatic
Identi�cation Advanced Technologies.

[22] Tobias Grosse-Puppendahl, Xavier Dellangnol, Christian Hatzfeld, Biying Fu,
Mario Kupnik, Arjan Kuijper, Matthias R. Hastall, James Scott, and Marco
Gruteser. Platypus: Indoor Localization and Identi�cation Through Sensing
of Electric Potential Changes in Human Bodies (ACM MobiSys ’16).

[23] Rim Helaoui, Daniele Riboni, and Heiner Stuckenschmidt. A Probabilistic On-
tological Framework for the Recognition of Multilevel Human Activities (ACM
UbiComp ’13).

[24] TimothyW. Hnat, Erin Gri�ths, Ray Dawson, and KaminWhitehouse. Doorjamb:
Unobtrusive Room-level Tracking of People in Homes Using Doorway Sensors
(SenSys ’12).

[25] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. 2002. An e�cient k-means clustering algorithm: analysis and implementa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (2002).

[26] David J Ketchen and Christopher L Shook. 1996. The application of cluster
analysis in strategic management research: an analysis and critique. Strategic
management journal (1996).

[27] Nacer Khalil, Driss Benhaddou, Omprakash Gnawali, and Jaspal Subhlok. Non-
intrusive Occupant Identi�cation by Sensing Body Shape and Movement (ACM
BuildSys ’16).

[28] P. Kodeswaran, R. Kokku, M. Mallick, and S. Sen. Demultiplexing activities of
daily living in IoT enabled smarthomes. In IEEE INFOCOM 2016.

[29] Percy Liang and Dan Klein. Online EM for UnsupervisedModels. In Proceedings of
Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL ’09).

[30] Qiguang Lin, Ea-Ee Jan, and James Flanagan. 1994. Microphone arrays and
speaker identi�cation. IEEE Transactions on Speech and Audio Processing (1994).

[31] Cao Gadgets LLC. 2017. Wireless Sensor Tag System: Monitor Everything from the
Internet. http://www.wirelesstag.net.

[32] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory (1982).

[33] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. M. Makela, and H. A. Ailisto.
Identifying users of portable devices from gait pattern with accelerometers. In
ICASSP 2005.

[34] Mathworks. 2017. Entropy (Wavelet Package). https://www.mathworks.com/
help/wavelet/ref/wentropy.html.

[35] Samantha Murphy. 2015. Samsung: By 2020, all of our products will be connected
to the web. http://mashable.com/2015/01/05/samsung-internet-of-things/#c3_
K6GzxJ65N.

[36] Shijia Pan, Ningning Wang, Yuqiu Qian, Irem Velibeyoglu, Hae Young Noh, and
Pei Zhang. Indoor Person Identi�cation Through Footstep Induced Structural
Vibration (ACM HotMobile ’15).

[37] Shijia Pan, Tong Yu, Mostafa Mirshekari, Jonathon Fagert, Amelie Bonde, Ole J.
Mengshoel, Hae Young Noh, and Pei Zhang. 2017. FootprintID: Indoor Pedestrian
Identi�cation through Ambient Structural Vibration Sensing. ACM Interactive,
Mobile, Wearable and Ubiquitous Technologies (2017).

[38] William M. Rand. 1071. Objective Criteria for the Evaluation of Clustering
Methods. J. Amer. Statist. Assoc. (1071). DOI:https://doi.org/10.2307/2284239

[39] Juhi Ranjan, Erin Gri�ths, and Kamin Whitehouse. Discerning Electrical and
Water Usage by Individuals in Homes (ACM BuildSys ’14).

[40] Daniele Riboni, Timo Sztyler, Gabriele Civitarese, and Heiner Stuckenschmidt.
Unsupervised Recognition of Interleaved Activities of Daily Living Through
Ontological and Probabilistic Reasoning (ACM UbiComp ’16).

[41] Scott T Stillman, Rawesak Tanawongsuwan, and Irfan A Essa. 1998. A system for
tracking and recognizing multiple people with multiple camera. Technical Report.
Georgia Institute of Technology.

[42] STMicroelectronics. LPY503AL Datasheet. http://www.st.com/web/en/resource/
technical/document/datasheet/CD00237199.pdf.

[43] Yunze Zeng, Parth H. Pathak, and Prasant Mohapatra. WiWho:Wi�-based Person
Identi�cation in Smart Spaces (ACM/IEEE IPSN ’16).

[44] J. Zhang, B. Wei, W. Hu, and S. S. Kanhere. WiFi-ID: Human Identi�cation Using
WiFi Signal. In 2016 International Conference on Distributed Computing in Sensor
Systems (DCOSS).


